= 14284060xx

B REIR R a5 B el

Be (R) % WR: BT E AR
Lk 4 R 1401E TR (A REFR)
FAE W A HEX

R 4 . Linux 31ERS

2015-2016 “FAEHS —~F 1

mE

ARSCRSE I H SR AR . H DR D St i 7 B 4200 AR (emulation), v A
RMEFERLE R I R, BIROIE AR FROE M TR 5y . T4 B S 0 B R
FI#$ W BL (phase) it — bR, — bR (AN 1.1, 1.2 55) NIBRE R A Be 22 HE) 25 Fiis
) (activity), FEG1FEH R I BERAR BN o QRS TE S G R LN AL, W] AR —
GO — APl (B4 T —55), Al RIS SE PR 0L % e 75 R m — P4y
e

Activity. A distinct, scheduled portion of work performed during the course of a project.
RN VR RS, AT H R St i) TARZHER 5> . Project Phase. A col-
lection of logically related project activities that culminates in the completion of one or more
deliverables. B EL: —HAARBECRNBHFENWES, BE - DPHEZ PR
BRI SE NS A

XA AR HERR S %, N ERLLLE SR s s . i
FEJF .

X ##18): Xilinx SDK; Zedboard; Appweb; MJPG-Streamer

E1EE: OfFH 14284060xx 14 JE{E THFE (IRAXEEFE)
HVEZ, 14284060xx 14 {5 T2 RARIEFR)
GVEW 14284060xx 14 {5 TR (IR A RIEFR)

1 ZynqLinux 2% 44

1.1

1.2

AFirstLook
1.1.1 Introduction
1.1.2 Objectives oo i
1.1.3 Typographic Conventions
1.14 BeforeYouStart
1.1.5 Initializing the Workshop Environment
1.1.6 General FlowforthisLab.
1.1.7 PoweruptheBoardandLogin
1.1.8 Exploring the Embedded Linux Environment
1.1.9 Conclusion
1.1.10 Completed Solution
Buildand BootanImage
1.2.1 Introduction
122 Objectives.o
1.23 Preparation e
124 General FlowforthisLab.
1.2.5 ChoosingaLinuxPlatform.
1.2.6 Buildingthe LinuxImage.
1.2.7 BootingtheSystem
128 Conclusion
1.2.9 Completed Solution o

2 W4&F0 Linux TCP/IP 4##2

2.1

Networkingand TCP/IP
2.1.1 Introduction
2.1.2 Objectives o i
2.1.3 Preparation e

N NN O o i i

NS I NS e e e e e e T e e
AN U1 O U1 = xR W W W W

2.2

4
2.1.4 Exploring Network Features 28
2.1.5 General FlowforthisLab. 28
2.1.6 Logging In Using Telnet Step. 28
2.1.7 Transferring Fileswith FTP 30
218 UsingNES 30
2.1.9 Navigating the Web Pageon HTTP 35
2.1.10 Building the Web-Enabled Application 36
2.1.11 Conclusion 39
2.1.12 Completed Solution 40
Linux FIZRAESEE 41
220 SERCHM ..o 41
222 SEEGIEEE L 41
223 AEEIR .. 41
224 RECESHT ..o 44

1 ZynqLinux 2&N 48

1.1 A First Look

1.1.1 Introduction

Embedded Linux is the use of a Linux operating system in embedded systems. Unlike
desktop and server versions of Linux, embedded versions of Linux are designed for devices
with relatively limited resources. The ARM® Cortex™- A9 processor used in Xilinx Zynq® All
Programmable SoCs support embedded Linux. In most of the labs in this workshop, you will
run embedded Linux, build using the PetaLinux tools, on the ARM Cortex-A9 MPcore.

This first lab is a basic introduction to embedded Linux and the development board
that you are using for the workshop. The basic activities covered here will be used repeatedly
through the later lab sessions, so be sure to ask your instructor if you have any questions or

concerns.

1.1.2 Objectives
After completing this lab, you will be able to:
» Power on the development board used in the workshop
 Login to the Zynq Linux system

o Make comparisons between the embedded Linux and desktop Linux environments

1.1.3 Typographic Conventions

Commands to be executed on the development (desktop) workstation look like the follow-
ing:

[host]$ command and parameters

Commands to be executed on the ARM processor Linux target look like the following:

run my Linux application

1 ZYNQLINUX % %44 6

1.1.4 Before You Start

Before you start, ensure that the:

« Power switch is in the ‘oft” position

JTAG cable is connecting the development board to the PC

Serial cable is connecting the development board to the PC

» Power cable for the development board is connected

o The Ethernet port on the development board connects to the Ethernet port of the desktop

(host) machine

o The BOOT.BIN and image. ub files are copied from the
~/emblnx/sources/labl/SDCard directory

o The SD card is inserted back into the target board.

« Set the jumpers to boot from the SD card as shown in Fig. 1.1.

& 1.1: SD Card Boot - jumper settings

1.1.5 Initializing the Workshop Environment

By default, your Ubuntu image has already set up the workshop environment for you.

If your workstation has been restarted or logout, run the following command to start
DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

1.1.6 General Flow for this Lab

o Step 1: Power up the Board and Login In
o Step 2: Explore the Embedded Linux Environment

1 ZYNQLINUX % %44 7

1.1.7 Power up the Board and Log in

1. Power up the board and run the DHCP server on the host.

1) Power ON the board.
2) Run the DHCP server:

[host] $ sudo service isc-dhcp-server restart
2. Set the serial port terminal.

1) Ensure that /dev/ttyACMO is set to read/write access:
[host]$ sudo chmod 666 /dev/ttyACMeo
2) In the dashboard, in the Search field, enter the serial port.
3) Select the Serial port terminal application from the desktop.
4) Reset (BTN7) the board to see the booting info.
Watch the GtkTerm (Serial Port) console as the board goes through the boot pro-

cess. Messages similar to the following can be found in the board console as Fig. 1.2
and Fig. 1.3.

U-Boot 2014.01 (Oct 06 2014 — 23:22:43)

Memory: ECC disabled
DEAM: 512 MiB

MMC : zyng_sdhci: 0

SF: Detected S25FL256S_64K with page size 256 Bytes, erase size 64 KiB, total 32 MiB
*** Warning — bad CRC, using default environment

In: serial

out : serial

Err: serial

Net: Gem.e000b000

U-BOOT for petalinux

Hit any key to stop autchoot: 1 I

& 1.2: Linux booting process in the board console

1.1.8 Exploring the Embedded Linux Environment

1. Explore the booting message and basic Linux commands.

1) Scroll up in the terminal window and review the bootup log. Existing Linux users
should recognize the output. You will see image . ub loading, drivers loading such

as USB, SD, etc., and the starting of the uWeb server.

1 ZYNQLINUX % %44 8

Freeing unused kernel memory: 3644K (c067c000 — c0a0b000)

INIT: version 2.88 booting

Starting Bootlog daemon: bootlogd.

Creating /dev/flash/* device nodes

random: dd urandom read with 8 bits of entropy available

starting Busybox inet Daemcon: inetd... done.

Starting uWeb server:

NET: Registered protocol family 10

update-rc.d: /etc/init.d/run—-postinsts exists during rc.d purge (continuing)

Remcving any system startup links for run—-postinsts
/etc/rcs.d/s99run-postinsts

INIT: Entering runlevel: 5

Configuring network interfaces... done.

Stopping Bootlog daemon: bootlogd.

Built with PetaLinux v2014.2 (Yocto 1.6) petalinux /dev/ttyPSs0
petalinux login:

& 1.3: Linux booting process in the board console

2) Log in by entering root as both the login and password.

3) Spend the next 15 minutes exploring basic Linux commands such as: 1s -1, vi,
whoami, date

4) Run the following command to list the applications currently installed:

1s /bin

2. Use the gpio-demo application to test the GPIOs. The gpio-demo application is used to
write value to the GPIO peripheral or read value from the GPIO peripheral.

1) Use the following command to see the available GPIOs in the system. See Fig. 1.4
1s /sys/class/gpio
The GPIOs are presented as gpiochip<ID> in the directory. Have a look at the
file /sys/class/gpio/gpiochip<ID>/1label.
For example:
cat /sys/class/gpio/gpiochip243/label
The GPIO label file contains the GPIO label. The label contains the GPIO’s physical
address information. The GPIO label format is
/amba@®/gpio@<PYHSICAL_ADDRESS>. As shown in Fig. 1.5.
In the ZedBoard system, the on-board GPIOs are: eight LEDs (eight channels), five
buttons (five channels), and eight switches (eight channels).

The gpiochip<ID> to GPIOs mapping is:

1 ZYNQLINUX % %44 9

gpiochip235 for 8 switches;
gpiochip243 for 8 LEDs;
gpiochip251 for 5 buttons;

GtkTerm - /dev/ttyACMO 115200-8-N-1

root@petalinux:~#%# 1ls /sys/class/gpio/
eXport gpiochip233 gpiochipz243 gpiochipZ3l unexport
root@petalinux:~#

] 1.4: Checking for the available GPIOs in the system

|root@petalinux:~# cat /sys/class/gpio/gpiochip243/label
/amba@0/gpio@41220000
root@petalinux:~# I

& 1.5: GPIO Physical Address Information

2) Run the following command to turn ON all eight LEDs (labeled as LDO to LD7 on
the board):
gpio-demo -g 243 -0 255
Note: The output is in HEX format using the lower eight bits of the HEX value
written. For example, in this case the equivalent of d"255 is OxFF.

3) Run the following command to print the status of the eight DIP switches (labeled
as SWO0 to SW7 on the board):
gpio-demo -g 235 -i
Note that you can try changing the DIP switch values.

3. Find the CPU information and interrupts.

Another interesting place to explore is the /proc directory. This is a virtual directory
that provides a window into the kernel. For example, the file /proc/cpuinfo contains

details about the CPU, /proc/interrupts provides interrupt statistics, and so on.

1) Enter the following command (Results shows as Fig. 1.6):
cat /proc/cpuinfo
The contents of /proc/cpuinfo shows the processor information, such as its ver-
sion and hardware features. Your /proc/cpuinfo may be different than above,
depending on the configuration of the processor.

2) Enter the following command (ref Fig. 1.7):

cat /proc/interrupts

1 ZYNQLINUX % i/ 28 10

root@petalinux:~# cat /proc/cpuinfo

processor : 0
model name : ARMv7 Processor rev 0 (v7l)
Features : swp half thumb fastmult vfp edsp neon vipv3 tls vifpd3Zz

CPU implementer : 0x41
CPU architecture: 7

CPU wvariant : 0x3

CPU part : Oxc0%

CPU revision : 0

processor : 1

mode]l name : ARMv7 Processor rev 0 (v71)

Features : swp half thumb fastmult vfp edsp neon vipv3 tls vipd3z

CPU implementer : 0x41
CPU architecture: 7

CPU wvariant : 0Ox3

CPU part : OxcO09

CPU revision : 0

Hardware : Xilinx Zyng Platform
Revision : 0000

Serial : 000000000000000DO

¥ 1.6: Viewing the CPU information

/proc/interrupts shows the interrupts information of the system. Your results
may be different depending on when the command was executed and what were the
other commands executed to access the hardware devices. /proc/interrupts
tells you what interrupts are present in your system, their type, and how many in-
terrupts have happened.

3) Open another terminal window on the desktop machine.

4) Enter cat /proc/cpuinfo and compare with the embedded Linux information
by using the same command (Fig. 1.8).
Another thing to note is the standard Linux directory structure: /bin, /dev,

/tmp, /var, and so on.
4. Use ping command to test the network connection.
1) After the system boots, log into the system by entering root as both the login name

and password.

2) Execute the ping command to ping the host machine.
ping 192.168.1.1

You should see the response from the host machine.

1 ZYNQLINUX % %44

root@petalinux:~% cat /proc/interrupts

CPUO CPUl
27: 0 0 GIC 27 gt
29: 1093 671 GIC 29 twd
35: 0 0 GIC 35 £800c000.psT7—-ocmc
40: 0 0 GIC 40 £8007000.psT7—-dev—cfg
43: 4245 0 GIC 43 ttc_clockevent
45: 0 0 GIC 45 f£8003000.ps7—-dma
46: 0 0 GIC 46 f£8003000.ps7—-dma
47 : 0 0 GIC 47 f£8003000.ps7—-dma
48: 0 0 GIC 48 £8003000.ps7—-dma
49: 0 0 GIC 49 f£8003000.ps7—-dma
51: 5] 0 GIC 51 e0004000.ps7—gspil
54: 7 0 GIC 54 etho
56: 35 0 GIC 56 mmcO
72: 0 0 GIC 72 f£8003000.ps7—-dma
73: 0 0 GIC 73 £8003000.ps7—-dma
74 0 0 GIC 74 £8003000.ps7—-dma
75: 0 0 GIC 75 f£8003000.ps7—-dma
82: 618 0 GIC 82 xuartps
IPI1: 0 152 Timer broadcast interrupts
IPIZ: 1481 1746 FERescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 27 74 Single function call interrupts
IPIS: 0 0 CPU stop interrupts
IPIG: 92 96 IRQ work interrupts
IPI7: 0 0 completion interrupts
Err: 0]

& 1.7: Viewing the Interrupts

1 ZYNQLINUX % i/ 28 12

GtkTerm - /dev/ttyACMO 115200-8-N-1

root@petalinux:~# cat /proc/cpuinfo Serial Terminal Port
processor : 0 Target Board
model name : ARMv7 Processor rev 0 (v71l)
BogoMIFS : 1332.01
Features : swp half thumb fastmult vip edsp necon vipv3 tls
CPU implementer : Ox4l Terminal Window - Host
CPU architecture: 7
CPU wvariant : 0x3
CPU part 1 0xc09
CPU revision : 0
processor : 1 T)
model name : ARMvT Processor rev 0 (v i g&wtnehﬂtl
BogoMIES : 1332.01 - : 23
Features : swp half thumb fastmult {EEEIEGELE : Intel(R) Core(TM)2 Duo CPU P8700 @ 2.53GHz
CPU implementer : 0x41l teppt 110
CPU architecture: 7 ° REEE
CPU wariant 1 0x3 S : 800000
€ : 3072 KB
CPU part 1 0xc09
CPU revision : 0
Hardware : Xilinx Zyng Platform
Revision : 0000
Serial : 0000000000000000

roct@petalinux:~# xemacps €000b000.ps7-ethg
Jdev/ttyACMO 115200-8-N-1

Tpu_exception

cpu{d level
wp

%] 1.8: Serial Port and Terminal Window - cpuinfo

3) Execute the ping command from the host machine terminal window to see the re-
sponse from the target board.
[host]$ ping 192.168.1.2
The static ip address has been assigned when the system was built. You should see

the response from the target machine.
4) Close the GtkTerm window
5) Power OFF the board.

1.1.9 Conclusion

The purpose of this lab was to introduce you to the embedded Linux target and demon-
strate its heritage in the desktop Linux genealogy. This is one of the immediate benefits of
embedded Linux. As an application and user environment, it has tremendous commonality
with standard desktop Linux platforms.

Although brief, this introduction should have provided you with some basic experience
with setting up and powering on the board, and logging into and navigating around the embed-

ded Linux target. These basic capabilities will be expanded upon in subsequent lab sessions.

1 ZYNQLINUX % i/ 28 13

1.1.10 Completed Solution

If you want to run the solution then copy BOOT.bin and image.ub from the
sources\lab1\SDCard directory onto a SD card. Place the SD card in the ZedBoard. Set
ZedBoard in the SD Card boot mode. Connect the ZedBoard to the host machine using
Ethernet cable.

Run the following command to start DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Power ON the board. Set the terminal session.

Press PS-SRST (BTN7) button. Let the board boot. Login into the system and test the lab.

1.2 Build and Boot an Image

1.2.1 Introduction

The most basic skill required for developing embedded Linux is working in the cross-
compilation environment: compiling the kernel, libraries, and applications and downloading
the resulting image onto the embedded target. The purpose of this lab is to familiarize you with
this process.

This lab will prepare you for the most basic task of working with embedded Linux: how to
build and boot the operating system and applications. Embedded Linux target processors, such
as the ARM® Cortex™-A9 MPcore, are usually developed in a cross-compilation environment.
This means that the kernel and applications are compiled on a development machine (in this
case, a Linux PC having a non-target processor), and then downloaded onto the target.

The PetaLinux tools support a number of configuration architectures that automate much
of this process. In this lab, you will learn how to use these tools and how to download the
resulting embedded Linux image onto the hardware platform.

QEMU is a generic and open-source machine emulator integrated into the PetaLinux
tools. In this lab, you will use QEMU to run the Linux built for the ARM Cortex-A9 MP-
core system. It can achieve near native performance by executing the guest code directly on the
host CPU

1.2.2 Objectives
After completing this lab, you will be able to:

o Build the ARM Cortex-A9 MPcore Linux kernel and applications

« Boot the resulting system image in QEMU

1 ZYNQLINUX % i/ 28 14

« Download the resulting system image onto the development board

1.2.3 Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section
of Lab 1 for necessary preparatory information on how to set up the environment.

If your workstation has been restarted or logout, run the following command to start
DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed

information.

1.2.4 General Flow for this Lab

« Step 1: Choosing a Linux Platform
« Step 2: Building the Linux Image
« Step 3: Booting the System

1.2.5 Choosing a Linux Platform
A Linux platform tells what to build into the Linux image; it tells the following information:

o The hardware platform information such as address mapping, interrupts, and the proces-

sor’s characteristics, for example
o The Linux kernel settings
o User space applications settings
o File system settings
o Flash partition table settings
1. Change the path to the project directory.

1) Run the following commands to create and change to the project directory path:
[host] $ mkdir ~/emblnx/labs/lab2
[host] $ cd ~/emblnx/labs/lab2
Each lab in this workshop is installed in the ~/emblnx/1labs directory. Adjust the
path if you have installed the labs at a different path.

2. Use the petalinux-create command to create a new embedded Linux platform and

choose the platform.

1 ZYNQLINUX % i/ 28 15

1) Source the PetaLinux tools if you didn't do it. It assumes that PetaLinux is installed

in /opt/Xilinx directory
[host] $ source /opt/Xilinx/petalinux-v2014.2-final/settings.sh

2) Run the following command from the 1ab2 directory to create a new Petalinux

project (Fig. 1.9):

[host] $ petalinux-create -t project -s \
/opt/pkg/Avnet-Digilent-ZedBoard-v2014.2-final.bsp

petalinux@ubuntu:~/emblnx/labs/1ab2S petalinux-create -t project -s fopt/pkg/Avnet-Digilent-ZedBoard-v2014.2-final.bsp
INFO: Create project:

INFO: Projects:

INFO: * Avnet-Digilent-ZedBoard-2014.2

INFO: has been successfully installed to /home/petalinux/emblnx/labs/lab2/

INFO: New project successfully created in fhome/petalinux/emblnx/labs/lab2/
petalinux@ubuntu:~/emblnx/labs/1ab2s

] 1.9: Creating a new PetaLinux project

The above command assumes that the board support package (BSP) is installed in
the /opt/pkg directory. Modify the path if the BSP is in a different location.
The command will create the Petalinux software project directory: Avnet-
Digilent-ZedBoard-2014.2 under ~/emblnx/labs/lab2. (Fig. 1.10)
A PetaLinux project directory contains configuration files of the project, the Linux
subsystem, and the components of the subsystem. petalinux-build builds the
project with those configuration files. User can run petalinux-config to mod-
ity them. Below is the PetaLinux project directory.

3) Change the directory to
~/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.2.

1.2.6 Building the Linux Image

1. Now that you have selected a pre-built platform, build a Linux image based on this plat-

form.

1) Enter the following command to build the Linux image: Note: if you find some
errors like this, execute “petalinux-build” command 3 times. (Fig. 1.11 and 1.12)
$ petalinux-build

This may take a few minutes. During this time, the following will occur:

« Cross-compiling and linking of the Linux kernel (1inux-3.x/*)

1

ZYNQ LINUX % %/~ 4

[ERROR] E: Sub-process fopt/Xilinx/petalinux-v2014.2-final/tools/packagemanager
bin/dpkg returned an error code (1)

ERROR:

Failed

<project-root=>
-.petalinux/

subsystems/
| -linux/

components/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -apps/
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|

-hw-description/
-conflg.project

| -config
-hw-description/
-configs/

-device-tree/
| -ps.dtsi
| -pl.dtsi
| -system-conf.dtsi
| -system-top.dts
-kernel/
| -config
-u-boot/
| -config.mk
| -platform-auto.h
| -platform-top.h
-rootfs/
| -config

-bootloader/
| -fs-boot/ | zyng-fsbl/

| -myapp/

& 1.10: PetaLinux Project Directory

to build 1linux

&l 1.11: Building the Linux image

16

1 ZYNQLINUX % i/ 28 17

petalinux@ubuntu:~/emblnx/labs/1lab2/Avnet-Digilent-ZedBoard-2014.2% petalinux-build
: checking component...
: Generating make files and build linux
: Generating make files for the subcomponents of linux
: Building linux
] pre-build linux/rootfs/fwupgrade
] pre-build linux/rootfs/peekpoke
] pre-build linux/rootfs/uleb
] build system.dtb
] build linux/kernel
] update linux/u-boot source
] generate linux/u-boot configuration files
] build linuxj/u-boot
] Setting up stage config
] Setting up rootfs config
] uUpdating for armv7a-vfp-neon
] Updating package manager
] Expanding stagefs
] build linux/rootfs/fwupgrade
] build linux/rootfs/peekpoke
] build linux/rootfs/uleb
] build kernel in-tree modules
] modules linux/kernel
] post-build 1inux/rootfs/fwupgrade
] post-build linux/rootfs/peekpoke
] post-build linux/rootfs/uWeb
] pre-install linux/rootfs/fwupgrade
] pre-install linux/rootfs/peekpoke
] pre-install linux/rootfs/ukeb
] install system.dtb
] install linux/kernel
] update linux/u-boot source
] generate linux/u-boot configuration files
] build linuxj/u-boot
] install linux/u-boot
] Expanding rootfs
] install sys_init
] install linux/rootfs/fwupgrade
] install linux/rootfs/peekpoke
] install linux/rootfs/uWeb
1 install kernel in-tree modules
] modules_install linux/kernel
] post-install linux/rootfs/fwupgrade
] post-install linux/rootfs/peekpoke
] post-install linux/rootfs/ukeb
] package rootfs.cplo to /home/petalinux/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.2/images/linux
] Update and install vmlinux image
] vmlinux linux/kernel
] install linux/kernel
] package zImage
1 zImage linux/kernel
[INFO] install linux/kernel
petalinux@ubuntu:~/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.25 I

] 1.12: Building the Linux image

1 ZYNQLINUX % %44

18

Cross-compiling and linking of the default user libs and applications (1ib/*

and user/¥*)

Building of alocal copy of the ARM Cortex-A9 processor Linux root file system
(romfs/*)

Assembling of the kernel and root file system into a single downloadable binary

image file (images/*)

Copying of the image files from images/ in to /tftpboot

The build log is saved in the ~/emblnx/labs/lab2/Avnet-Digilent-
ZedBoard-2014.2/build. log file.

2) Once compilation completes, look at the contents in the images/1linux subdirec-

tory by executing the following commands from the project directory (Fig. 1.13):

[host] $ cd images/linux

[host] $ 1s -1la

petalinux@ubuntu:~/emblnx/labs/1lab2 fAvnet-Digilent-ZedBoard-2014.2/images/linux$ ls -la

total 59664
drwxrwxr-x 2
drwxrwxr-x 3
STWXIWXr-X 1
STW-Tw-r-- 1
-rW-rw-r-- 1
-rTW-rw-r-- 1
STW-Tw-r-- 1
-rW-rw-r-- 1
-rTW-rw-r-- 1
STWXIWXr-X 1
-rw-rw-r-- 1
STWXIWXr-X 1
-TW-rw-r-- 1
-rw-rw-r-- 1
-rW-Tw-r-- 1
STWXIWXr-xX 1
STWXrwWxr-x 1
STWXIWXr-x 1

petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux

petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux
petalinux

4096
4096
10887796
7107812
8049152
3536248
16150
1762086
253200
1448414
253200
1448414
759756
759736
3536312
14063189
7106504
242031

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Dct
Oct
Oct
Dct
Oct
Oct

image.elf
image.ub

system.

System
u-boot
u-boot
u-boot
u-boot
u-boot
u-boot

dtb
.map.linux
.bin
.elf

-s.bin
-s.elf

.5rec

-5.5rec

vmlinux

zImage

6 3 zyngq_fsbl.elf
petalinux@ubuntu:~/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.2/images/1linuxs I

& 1.13: Various generated files

3) Examine the contents of the /tftpboot directory by executing:
[host] $ 1s /tftpboot
All these files in the ~/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-
2014.2/images/linux directory have a copy in /tftpboot because as part of

the build process, the image files have also been copied there. The development

machine has been configured as a TFTP (trivial FTP) server, allowing the board to

pull new kernel images directly over the network from the fixed known location

(instead of knowing the actual paths of the project directories). You will use this

capability in the next exercise.

1 ZYNQLINUX % i/ 28 19

Image Name Descriptions

image.elf Linux image in ELF format
image.srec Linux image in SREC format
image.ub Linux image in U-Boot format
rootfs.cpio Root file system image
u-boot.bin U-Boot image in binary format
u-boot.srec U-Bootimage in SREC format
u-boot.elf U-Bootimage in ELF format

u-boot-s.* Relocatable U-Boot image

1.2.7 Booting the System

1. As mentioned earlier, you can run Linux for the ARM Cortex-A9 MPcore system on
QEMU.

Load the ARM Cortex-A9 MPcore Linux on QEMU.
1) Enter the following command in the host Terminal window to load the kernel only
(Fig. 1.14~1.17):
[host]$ petalinux-boot --gemu --kernel
2) Log into the system and explore it as you did in the “A First Look” lab.
Note: Use root as the login name and password.

3) Exit QEMU by pressing <Ctrl+a> then <x>.
2. Copy the BOOT . BIN file from the pre-built directory to the SD card.

1) Copy only the BOOT.BIN file from the ~/emblnx/labs/lab2/Avnet-
Digilent-ZedBoard-2014.2/pre-built/linux/images directory to the
SD card.

2) Make sure that the board is turned OFFE.
3) Insert the SD card into the target board.
4) Make sure that the board is set to boot from the SD card.

3. Run the DHCP server on the host.

1) Run the DHCP server:

[host]$ sudo service isc-dhcp-server restart

4. Power up the board and set the serial port terminal.

1

ZYNQ LINUX % %A 4 20

petalinux@ubuntu:~/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.2/images/Linux$ petalinux-boot --gqemu --kernel
INFO: The image provided is a zImage
INFO: TCP PORT is free
INFO: Starting arm QEMU
INFO: qemu-system-arm -L fopt/pkg/petalinux-v2014.2-final/etc/qemu -M arm-g ric-fdt -smp 2 -machine linux=on --serial mon:9g
tdio --nographic -kernel /tmp/tmp.psSile7lE@ -gdb tcp::9000 -dtb /home/petalinux/emblnx/labs/lab2/Avnet-Digilent-ZedBoard-2014.3
/images/linux/system.dtb -tftp /tftpboot
Uncompressing Linux... done, booting the kernel.
Booting Linux on physical CPU 0x@
Linux version 3.14.2-xilinx (petalinux@ubuntu) (gcc version 4.8.1 (Sourcery CodeBench Lite 2013.11-53)) #2 SMP PREEMPT Mon Oct
6 12:29:22 UTC 2014
CPU: ARMv7 Processor [410fc@90] revision ® (ARMv7), cr=10c5387d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine model: Avnet-Digilent-ZedBoard-2014.2
bootconsole [earlycon@] enabled
Memory policy: Data cache writealloc
PERCPU: Embedded 8 pages/cpu @dfbdc@ee s10752 r8192 d13824 u32768
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 130048
Kernel command line: console=ttyP50,115200 earlyprintk
PID hash table entries: 2848 (order: 1, 8192 bytes)
Dentry cache hash table entries: 65536 (ord 6, 262144 bytes)
Inode-cache hash table e es: 32768 (or 5, 131072 bytes)
Memory: 583676K/524288K available (4835K kernel code, 310K rwdata, 1772K rodata, 3642K init, 5337K bss, 20612K reserved, @K hig
mem)
Virtual kernel memory layout:
vector exffffeeee - oxffffieee (4 kB)
fixmap oxfffoeene - exfffesnoe (896 kB)
vmalloc Oxe0800000 - Oxffoeeee0 (488 MB)
lowmem OxcO0O0000 - BxeMPAEEEO (512 MB)
pkmap 0xbfenOOO Bxch0eo0a80 (2 MB)
modules oxbfeoo000 - 0xbfedBooO { 14 MB)
text 0xc0008000 - OxcO67bf7c (6608 kB)
.init OxcO67cHN0 - OxcBHabaadd (3643 kB)
.data OxcBafcOOO - OxcOa598a8 (311 kB)
0xc0a598b4 - excofsfdss (5338 kB)
e hierarchical RCU implementation.
lockdep checking is enabled.
Dump stacks of tasks blocking RCU-preempt GP.
RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.
RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2
NR_IRQS:16 nr_irqs:16 16
ps7-slcr mapped to e0862800
zyng_clock_init: clkc starts at e6802100
Zyng clock init
sched_clock: 16 bits at 54kHz, resolution 18432ns, wraps every 1207951633ns
ps7-ttc #0 at e0804000, irq=43
Console: colour dummy device 80x3@

] 1.14: Console output 1

1

ZYNQ LINUX % %/~ 4

Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar
... MAX_LOCKDEP_SUBCLASSES: 8
.. MAX_LOCK_DEPTH: 48
. MAX_LOCKDEP_KEYS: 8191
CLASSHASH_SIZE: 4096
. MAX_LOCKDEP_ENTRIES: 16384
... MAX_LOCKDEP_CHAINS: 32768
«+. CHAINHASH_SIZE: 16384
memory used by lock dependency info: 3695 kB
per task-struct memory footprint: 1152 bytes
Calibrating delay loop... 20839.80 BogoMIPS (Llpj=10199040)
pid_max: default: 32768 minimum: 301
Mount-cache hash table entries: 1024 (order: 8, 4096 bytes)
Mountpoint-cache hash table entries: 1024 (order: ®, 4096 bytes)
CPU: Testing write buffer coherency: ok
missing device node for CPU ©
missing device node for CPU 1
CPu@: thread -1, cpu @, socket 0, mpidr 80000000
Setting up static identity map for ©x496b30 - 0x496bB8
L2x0 series cache controller enabled
12x8: 8 ways, CACHE_ID 0x00000000, AUX_CTRL 0x00080000, Cache size: 512 kB
CPU1: Booted secondary processor
CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
Brought up 2 CPUs
SMP: Total of 2 processors activated.
CPU: ALl CPU(s) started in SVC mode.
devtmpfs: initialized
VFP support v@.3: implementor 41 architecture 3 part 30 variant 9 rev @
regulator-dummy: no parameters
NET: Registered protocol family 16
DMA: preallocated 256 KiB pool for atomic coherent allocations
cpuidl using governor ladder
cpuidle: using governor menu
syscon f8000000.ps7-slcr: regmap [mem OxfB8000000-0xf8000Fff] registered
hw-breakpoint: debug architecture @x@ unsupported.
bio: create slab <bio-0> at 0
vgaarb: loaded
SCSI subsystem initialized
usbcore: registered new interface driver usbfs
registered new interface driver hub
registered new device driver usb
Linux media interface: v0.10
Linux video capture interface: v2.00
pps_core: LinuxPPS API ver. 1 registered
pps_core: Software ver. 5.3.6 - Copyright 2085-2007 Rodolfo Giometti <giometti@linux.it>
PTP clock support registered
EDAC MC: Ver: 3.0.0
: preallocated 4096 debug entries
: debugging enabled by kernel config
switched to clocksource ttc_clocksource
NET: Registered protocol family 2
TCP established hash table entries: 4096 (order: 2, 16384 bytes)
TCP bind hash table entrie 4096 (order: 5, 147456 bytes)
TCP: Hash tables configured (established 4096 bind 4096)
TCP: reno registered
UDP hash table entries: 256 (order: 2, 20480 bytes)

& 1.15: Console output 2

21

1

ZYNQ LINUX % %/~ 4

UDP-Lite hash table entries: 256 (order: 2, 20488 bytes)
Registered proteocol family 1
: Registered named UNIX socket transport module.
Registered udp transport module.
: Registered tcp transport module.
Registered tcp NFSv4.1 backchannel transport module.
hash table entries: 512 (order: 3, 32768 bytes)
jffs2: version 2.2. (NAND) (SUMMARY) e 2001-2006 Red Hat, Inc.
msgmni has been set to 983
io scheduler noop registered
io scheduler deadline registered
io scheduler cfq registered (default)
dma-pl330 fB8003000.ps7-dma: Loaded driver for PL330 DMAC-267056
dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 Num_Events-16
eP001000.serial: ttyPS® at MMIO 0xe@@01000 (irq = 82, base_baud = 992863) is a xuartps
console [ttyPSO] enabled
console [ttyPS0] enabled
bootconsole [earlycon®] disabled
bootconsole [earlycon@] disabled
brd: module loaded
loop: module loaded
m25p80 spi32766.0: s25f1l256s1 (32768 Kbytes)
4 ofpart partitions found on MTD device
Creating 4 MTD partitions on "spi32766.0
0x000000000000-0Xx000000500000
0x000000500000-0Xx000000520000
0x000000520000-0x0000007a0000
0x000000Ta0000-0x000002000000 :
e1000e: Intel(R) PRO/1800 Network Driver - 2.3.2-k
Copyright(c) 1999 - 2013 Intel Corporation.
XEMACPS mii bus: probed
e000be00.ps7-ethern invalid address, use assigned
e000be0e.ps7-etherne MAC updated be:d4:87:99:ac:05
e000be00.ps7-ethernet: pdev->id -1, baseaddr 0xe080b0OO, irq 54
ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
ehci-pci: EHCI PCI platform driver
zynq-dr e0002000.ps7-usb: Unable to init USB phy, missing?
usbcor registered new interface driver usb-storage
mousedev: PS/2 mouse device common for all mice
i2c /dev entries driver
cpufreq_cpu@: failed to find cpu® node
cpufreq-cpu@: probe of cpufreq-cpu@.@ failed with error -2
Xilinx Zynq Cpuldle Driver started
sdhci: Secure Digital Host Controller Interface driver
sdhci: Copyright(c) Pierre Ossman
sdhci-pltfm: SDHCI platform and OF driver helper
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver
3 cubic registered
Registered protocol family 17
zyng_pm_1ioremap: no compatible node found for 'xlnx,zyng-ddrc-1.0
zyng_pm_late_1init: Unable to map DDRC IQ memory.
zyng_pm_remap_ocm: no compatible node found for 'xlnx,zynq-ocmc-1.0'
zyng_pm_late_init: Unable to map OCM.
Registering SWP/SWPB emulation handler
regulator-dummy: disabling
Jopt/pkg/petalinux-v2014.2-final/components/linux-kernel/xlnx-3.14/drivers/rtc/hctosys
Freeing unused kernel memory: 3640K (c067c000 - cPaBagoo)
INIT: version 2.88 booting
Starting Bootlog daemon: bootlogd.
Creating /dev/flash/* device nodes
random: dd urandom read with 3 bits of entropy available

Kl 1.16: Console output 3

unable to open rtc device (rtc@®)

22

1 ZYNQLINUX % i/ 28 23

i2c /dev entries driver

cpufreq_cpud: failed to find cpu® node

cpufreq-cpud: probe of cpufreq-cpu®.® failed with error -2

Xilinx Zynq Cpuldle Driver started

sdhci: Secure Digital Host Controller Interface driver

sdhci: Copyright(c) Pierre Ossman

sdhci-pltfm: SDHCI platform and OF driver helper

usbcore: registered new interface driver usbhid

usbhid: USB HID core driver

TCP: cubic registered

NET: Registered protocol family 17

zyng_pm_ioremap: no compatible node found for 'xlnx,zyng-ddrc-1.0'

zyng_pm_late_init: Unable to map DDRC IO memory.

zynq_pm_remap_ocm: no compatible node found for 'xlnx,zynq-ocmc-1.0'

zyng_pm_late_init: Unable to map OCM.

Registering SWP/SWPB emulaticn handler

regulator-dummy: disabling

/opt/pkg/petalinux-v2014.2-final/components/linux-kernel/xlnx-3.14/drivers/rtc/hctosys.c: unable to open rtc device (rtce)

Freeing unused kernel memory: 3640K (c067c000 - c0adadoo)

INIT: version 2.88 booting

Starting Bootlog daemon: bootlogd.

Creating /dev/flash/* device nodes

random: dd urandom read with 3 bits of entropy available

starting Busybox inet Daemon: inetd... done.

Starting uWeb server:

NET: Registered protocol family 1@

update-rc.d: fetc/init.d/run-postinsts exists during rc.d purge (continuing)
Removing any system startup links for run-postinsts ...
Jetc/rcs.dfS99run-postinsts

INIT: Entering runlevel: 5

Configuring network interfaces... udhcpc (v1.22.1) started

xemacps e080b8A0.ps7-ethernet: Set clk to 124999998 Hz

xemacps e080beee.ps7-ethernet: link up (1000/FULL)

Sending discover...

Sending select for 10.0.2.15...

Lease of 10.0.2.15 obtained, lease time 86408

/etc/udhcpc.d/50default: Adding DNS 10.0.2.3

done.

Stopping Bootlog daemon:

Built with Petalinux v2014.2 (Yocto 1.6) Avnet-Digilent-ZedBoard-2014_2 /dev/ttyPsS@

laAvnet-Digilent-ZedBoard-2014_2 login: I

Kl 1.17: Console output 3

1) Power ON the board.

2) Run the following command to make sure that /dev/ttyACMO is set to read/write

access:
[host]$ sudo chmod 666 /dev/ttyACMeo
3) In the dashboard, in the Search field, enter the serial port.

4) Select the Serial port terminal application.
5. Boot the new Linux image on the board.
1) Resettheboard (BTN7) to see the booting info on the GtkTerm console as the board

goes through the boot process.

2) Press any key to stop auto-boot when you see messages similar to the following in
the GtkTerm window (Fig. 1.18):

3) If you did not see the “DHCP client bound to address” message during uboot
bootup, you will need to run dhcp to obtain the IP address. (Fig. 1.19)
U-Boot-PetalLinux> dhcp

4) Set the TFTP server IP to the host IP by running the following command in the
u-boot console:

U-Boot-PetalLinux> set serverip 192.168.1.1

5) Download and boot the new image using TFTP by executing this command in the

1

ZYNQ LINUX % %A 4 24

U-Beoot 2014.01 (Jun 10 2014 - 13:33:51)

Memory: ECC disabled
DREAM: 512 MiB
MMC : zyng_sdhci: 0

SE

: Detected S25FL2565_64K with page size 256 Bytes, erase size 64 KiB, total 32 MiB

**%* Warning — bad CRC, using default environment

In: serial
out: serial
Err: serial
Net: Gem.e000b00O0

U-BOOT for Avnet-Digilent-ZedBoard-2014_2

Gem.e000b000 Waiting for PHY auto negotiation to complete...... done
BOOTP broadcast 1

DHCP client bound to address [122.168.1.6

Hit any key to stop autoboot: O

K 1.18: Stopping the autoboot

Hit any key to stop autcboot: 0

U-Boot—PetaLinux>

Gem.=2000b000:0 is connected to Gem.e000b000. Reconnecting to Gem.e=000b000
Zem.=2000b000 Waiting for PHY auto negotiation to complete....... done
BOOTP broadcast 1

DHCP client bound to address 192.168.1.6

& 1.19: Running DHCP to obtain the IP address

u-boot console:
U-Boot-PetalLinux> run netboot
This command will download the image.ub file from /tftpboot on the host to the
main memory of the ARM Cortex-A9 MPcore system and boot the system with the
image.

6) Watch the GtkTerm window.
Messages similar to the following show the image download progress. (Fig. 1.20)
The netboot command will automatically boot the system as soon as the image is
finished downloading.

7) Watch the booting messages on the GtkTerm window.
Other booting messages are the same as from the Lab1 because you used the default

configuration.
6. Use ping command to test the network connection.

1) After the system boots, log into the system by entering root as both the login name

and password.

1

ZYNQ LINUX % %A 4 25

U-Boot—-Petalinux> run netboot

Gem.e000b000:0 is connected to Gem.e000b000. Reconnecting to Gem.e000L000
Gem.e000b000 Waiting for PHY auto negotiation to complete...... done

Using Gem.e000b000 device

TFTF from server 192.168.1.1; our IP address is 1%2.168.1.7

Filename 'image.ub'.

Load address: 0x1000000

Loading: #######F##FEHHEFFfHEHHHFH#FRFFHFFRAFHFHERAFHFSIRFFHFSRSHHHSS

ittt AR AR AR AR R AR R R A AR AR A AR A
FHEFHEHFHRFH R HH AR H AR R R F R R R R R R R R R R 4
FHEFHEHFH R AR AR R R R R R R R R R R R R R
isdsassdsssdasssdaaddsssdiasadaisadaisdasssiassdanat iR innn it
fHftfftffrtAAEAAERAAAERARRRA RSB RARBRERAAERR AR AR SR ERAS
ittt AR AR AR AR R AR R R A AR AR A AR A
ittt A A A SRR AR AR AR R AR A AR AR AR RS
FHEFHEHFHRFH R HH AR H AR R R F R R R R R R R R R R 4
FHEFHEHFH R AR AR R R R R R R R R R R R R R
fHftfftftfrtHAEAAERAAAERARRRERRRS AR RARBRERAAERR SRR AR SRS
R s s s |

/dev/ttyACMO 115200-8-N-1

& 1.20: Downloading the built image

2) Execute the ping command to ping the host machine.
ping 192.168.1.1
You should see the response from the host machine.
3) Execute the ping command from the host machine terminal window to see the
response from the target board.
[host]$ ping 192.168.1.6
Use different ip address if the board is bound to different address (see Figure 1.18

to find out the address). You should see the response from the host machine.

7. Soft reboot from Linux.

1) Runthe reboot command in the serial terminal window tools to reboot the system:
reboot
The system should reboot.

2) Close the GtkTerm window.

3) Power off the board.

1.2.8 Conclusion

In this lab, you have learned how to:

o Cross-compile Linux

1 ZYNQLINUX % i/ 28 26

« Boot Linux for an ARM Cortex-A9 MPcore system in QEMU
« Download a new image to the board via Ethernet

You will use these capabilities in subsequent labs.

1.2.9 Completed Solution

If you want to run the solution then copy BOOT.bin from the
labsolution/lab2/SDCard directory onto a SD card. Place the SD card in the ZedBoard.
Set ZedBoard in the SD Card boot mode. Connect the ZedBoard to the host machine using
Ethernet cable.

Run the following command to start DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Copy the image.ub file from the labsolution\lab2\tftpboot directory into
/tftpboot directory.

Power ON the board. Set the terminal session. Interrupt the boot process when autoboot
message is shown. Set the serverip address using the following command in the target board
terminal window:

#set serverip 192.168.1.1

Run the netboot command:

#run netboot

Login into the system and test the lab.

2 4EF0 Linux TCP/IP 45%2

2.1 Networking and TCP/IP

2.1.1 Introduction

The ready availability of a complete TCP/IP stack, as well as a wide array of networking
applications, is a prime capability that argues in favor of using embedded Linux. This lab will in-
troduce you to embedded Linux networking and demonstrate how it can be useful both during
application development and deployment.

In the previous labs, you have already used Linux networking capabilities—the TFTP
utility—that pulls the Linux image over the network.

In this lab, you will make more explicit use of the system’s networking capabilities,
and in particular see how they can be used to dramatically speed up the application
building/download/test cycle.

You will also build a web-enabled application that can control some physical I/O on the
development board. This will be a fairly simple program, but it hints at something much more

powerful.

2.1.2 Objectives

After completing this lab, you will be able to:

« Explore the kernel configuration menu and identify configuration sub-menus that enable

Linux TCP/IP networking
o Login to the ARM Cortex-A9™ processor Linux system by using telnet
o Transfer files to and from Linux by using FTP

 Use the Network File System (NFS) to mount your host file system on the Linux target

and Investigate how this capability impacts the cross-development cycle
+ Experiment with the embedded web server on the Linux target

o Build and experiment with web-based applications under Linux

27

2 W% A1 LINUX TCP/IP %42 28

2.1.3 Preparation

If this is the first lab that you are performing, then refer to the “Before You Start” section
of Lab 1 for necessary preparatory information on how to set up the environment.

If your workstation has been restarted or logout, run the following command to start
DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Please refer to the “Initializing the Workshop Environment” section of Lab 1 for detailed

information.

2.1.4 Exploring Network Features

The default embedded Linux image on the board supports network applications. If you
are interested in Linux settings to enable Ethernet support and the network applications used

in this lab, see the Appendix section of this lab.

2.1.5 General Flow for this Lab

Step 1: Logging In Using Telnet

o Step 2: Transferring Files with FTP

Step 3: Using NFS

Step 4: Navigating a Web Page

step 5: Building the Web-Enabled Application

2.1.6 Logging In Using Telnet Step

In the previous labs, you have logged in to the ARM Cortex-A9 MPcore system by using
GtkTerm over a serial line. While this is convenient for debugging and development, it requires
a direct serial connection, which may not be available when a system is deployed.

Linux supports the standard telnet protocol directly. In fact, this is already enabled on
your ARM Cortex-A9 MPcore.

1. Change the path to the project directory.
1) Run the following commands to create and change to the project directory path:

[host] $ mkdir ~/emblnx/labs/lab4
[host] $ cd ~/emblnx/labs/lab4

2. Use the petalinux-create command to create a new embedded Linux platform and

choose the platform.

2 W% A1 LINUX TCP/IP %42 29

1) Run the following command from the 1ab4 directory to create a new Petalinux

2)

project:

[host] ¢ petalinux-create -t project -s /opt/pkg/Avnet-
Digilent-ZedBoard-v2014.2-final.bsp

The command will create the software project directory: Avnet-Digilent-
ZedBoard-2014.2 under ~/emblnx/labs/lab4.

Change the directory to the PetaLinux project:
~/emblnx/labs/lab4/Avnet-Digilent-ZedBoard-2014.2

3. Telnet to the ARM Cortex-A9 processor system using QEMU.

1)

2)
3)

4)

Run the following command to run the prebuilt ARM Cortex-A9 MPcore Linux in
QEMU:

[host] $ petalinux-boot --gemu --prebuilt 3 --root --subnet
\ 192.168.10.1/24

Press y to continue.

S2)the IP address of the target board to 192.168.10.2 using the command
#ifconfig etho 192.168.10.2

Open anew terminal and run the telnet command on the host with the IP address
noted in the previous step (192.168.10.2 in this case):

[host] $ telnet <IP address>

Note that the IP address above is the IP address of the virtual ARM Cortex-A9
MPcore system running under QEMU.

Fig. 2.1 is the output in the telnet console on the host:

petalinux@ubuntu:~/emblnx/labs/lab4s telnet 192.168.108.2
Trying 192.168.18.2...

Connected to 192.168.10.2.

Escape character is '~]'.

Built with PetalLinux v2014.2 (Yocto 1.6) Avnet-Digilent-ZedBoard-2014 2
Avnet-Digilent-ZedBoard-2014 2 login: I

5)
6)
7)

& 2.1: Telnet console on the host

Log in using root as the login id and password.
Try some Linux commands on the telnet console, such as 1s or pwd, for example.

Enter exit to quit the telnet program.

2 W% A1 LINUX TCP/IP %42 30

2.1.7 Transferring Files with FTP

FTP is another frequently used network feature. Your ARM Cortex-A9 MPcore Linux

system is also pre-configured with an FTP server.

1. Launch the FTP application and experiment with its different functionalities.

1)

2)

3)
4)

Launch the FTP application from your host by executing:

[host] $ ftp 192.168.10.2
Connected to 192.168.10.2.

220 Operation successful

Name (192.168.10.2:petalinux):
Press <Enter> at the name prompt when you see messages similar to the following:

230 Operation successful

Name (192.168.10.2:petalinux):
230 Operation successful
Remote system type is UNIX.

Using binary mode to transfer files.

You should now be able to see the FTP prompt:

ftp>

You can now transfer files to and from the ARM Cortex-A9 MPcore system. If you
are sending files to the ARM Cortex-A9 MPcore system, the home directory of FTP
in the ARM Cortex-A9 MPcore system is /var/ftp. You can get and put files to
that directory only.

Enter bye to quit ftp.

Close the terminal.

2.1.8 Using NFS

Network File System (NES) is a long-supported capability of Linux (and thus embedded

Linux). It allows a remote file system to be mounted over the network and used as though it

were physically on the local host. In the context of cross-compiled embedded Linux systems,

this can be invaluable.

NES is very useful when you are debugging your application. Instead of rebuilding and

downloading an entire image every time you make a change to your application, you can sim-

ply mount your development directory onto the ARM Cortex-A9 MPcore system. When you

2 W #Fn LINUX TCP/IP %3 #2 31

recompile your application, the new version is immediately available to run on the target.
1. Determine the LiveUSB partitions names and mount the second partition.

1) In the dashboard, enter Disk.
2) Select Disk Utility.
3) Select the LiveUSB device.

4) Select the 2nd partition and note its name. In the figure below it shows casper-rw

partition.

5) Click Mount Volume. (Fig. 2.2 and 2.3)

Patriot Memory (Patriot Memory) [/dev/sda] — Disk Utility

Storage Devices Drive
[Local Storage Model: Patriot Memory serial Number: 079C16013A50B0EE
== petalinux@!localhost
Peripheral Devices Firmware Version: PMAP World Wide Name: -
(=) usB, FireWire and other peripherals Location: = Device: /devfsda
708 MB File Write Cache: - Rotation Rate: -
== filesystem.squashfs o B R
Patriot Memory Capacity: 32 GB(32,010,928,128 bytes) Connection: USB ak 480.0 Mb/s
LiveW8Bhing: Master Boot Record SMART Status: ® Not Supported
7] 250 GB Hard Disk o
) - e * Format Drive .= Safe Removal
= ATATOSHIBA MEZS61GSYR Erase or partition the drive Power down the drive so it can be removed
CD/DVD Drive
“—/ TSSTcorp TSSTC...+/-RW TS-U633A S Benchmark

Measure drive performance

Volumes @

PENDRIVE caspermw
5.0 GB FAT 27 GB extd

Usage: Filesystem Device: Jdev/sdaz
Partition Type: Linux (0x83) Partition Label: -
Partition Flags: - Capacity: 27 GB (26,962,034,688 bytes)
Type: Ext4 (version 1.0) Available: -
Label: @ casper-Tw Mount Peint: Not Mounted
ZE& Mount Volume ¥ Format Volume
Mount the volume Erase or format the volume
QQ Check Filesystem & EditFilesystem Label
Check and repair the filesystem Change the label of the Filesystem
EditPartition (® Delete Partition
- Change partition type, label and Flags Delete the partition

I 2.2: Determining the LiveUSB device’s partition names and mounting the 2nd partition

After mounting, you should see the mount point as /media/casper-rw.
6) Close the Disk Utility application.
2. To allow your ARM Cortex-A9 MPcore system to mount a remote file system from your
host, the host must be configured to allow it. This is specified in the /etc/exports file.

Verify that the host is properly configured.

1) Open a new terminal.

2) Enter the following command:
[host] $ df

Note: Observe that /dev/sdb2 (in this case) is mounted as /media/casper-rw

2 W% #F8 LINUX TCP/IP % #2

32

x Patriot Memory (Patriot Memory) [/dev/sdb] — Disk Utility

Storage Devices
Local Storage
== petalinux@localhost
(L. Peripheral Devices
=) USB, Firewire and other peripherals
708 MB File
— filesystem.squashfs
77 250 GB Hard Disk
f— ATATOSHIBA MK2561GSYF

/= CD/DVD Drive
"/ TSSTeorp TSSTC...+/-RW TS-U633A

Drive

Model: Patriot Memory

Firmware Version: PMAP

Location: -

Write Cache: -

Capacity: 32GB(32,010,928,128 bytes)
Partitioning: Master Boot Record

¥ Format Drive
Erase or partition the drive

i Benchmark
" Measure drive performance

Volumes

PENDRIVE
5.0 GB FAT

Usage: Filesystem
Partition Type: Linux (0x83)
Partition Flags: -

Type: Ext4 (version 1.0)
Label: casper-rw

& Unmount Volume
Unmount the volume

& Check Filesystem
Check and repair the filesystem

Edit Partition
. Change partition type, label and Flags

N

Serial Number: 079C16013A50B0D4
World Wide Name: -
Device: /dev/sdb

Rotation Rate: -
USB at 480.0 Mb/s
® Not Supported

Connection:
SMART Status:

.= Safe Removal
Power down the drive so it can be removed

casper-rw

27 GB extd

Device: /dev/sdb2

Partition Label: -

Capacity: 27 GB (26,962,034,688 bytes)
Available: -

Mount Point: Mounted at /media/casper-rw

Format Volume
Erase or Format the volume

& EditFilesystem Label
Change the label of the filesystem

® Delete Partition
Delete the partition

& 2.3: casper-rw mounted as /media/casper-rw

on the host machine. This may be different for your system.

3) Examine the contents of the /etc/exports file by executing:
[host] $ cat /etc/exports

4) Find the following line in the /etc/exports

/home/petalinux 192.168.*.* (rw,sync,no_root_squash,no_subtree_check)

This says that the directory /home/petalinux can be exported to the machine
with IP address 192.168. *.* (IP address from 192.168.0.1 to 192.168.255.255)

and that it can be mounted with read-write permission.

However note that you do not have /home/petalinux mounted

Because you have /media/casper-rw mounted, edit the /etc/exports file

(you will have to use sudo command) and change the line to read as:

/media/casper-rw/home/petalinux 192.168.*.*

(rw,sync,no_root_squash,no_subtree check)

This says that the directory /media/casper-rw/home/petalinux can be ex-
ported to the machine with IP address 192.168. * . * (IP address from 192.168.0.1

to 192.168.255.255) and that it can be mounted with read-write permission.

2 W% A1 LINUX TCP/IP %42 33

5) Restart the NES server on host:
[host] $ sudo /etc/init.d/nfs-kernel-server restart
This command will stop running the NFS service if there is an NFS service running
and then restart it.

The following is the output on the host from this command:

Stopping NFS kernel daemon [OK]
Unexporting directories for NFS kernal daemon--- [OK]
Exporting directories for NFS kernel daemon--- [OK]

Starting NFS kernel daemon: [OK]

If you want to change the shared folder, you should:

« Edit the /etc/exports file
o Restart the NFS server by running:

[host] $ sudo /etc/init.d/nfs-kernel-server restart

Now, the host allows your ARM Cortex-A9 MPcore system to NFS mount to its

/home/petalinux directory.

3. Scroll the QEMU console back and take a closer look at the bootup output.

You should see when the network device driver is initialized, when the Linux networking
stack is configured, and, towards the end, when the portmap application is run. This

portmap application is required for NFS mount.

Mount the file system on the desktop PC on the ARM Cortex-A9 MPcore system

1) Login to the QEMU system.

2) Run the following command in the QEMU console:

mount -o port=2049,nolock,proto=tcp -t nfs \
192.168.10.1:/media/casper-rw/home/petalinux /mnt

This command tells mount that:

+ You want to mount a file system of NFS type (-t nfs).

« The host of this file system has IP address 192.168.10.1.

o The directory on the host that you want to mount is /home/petalinux (that
is, your home directory).

 You want this file system to be mounted underneath the local /mnt directory

(this is known as the “mount point”).

4. Change into the /mnt directory on the ARM Cortex-A9 system.

2 W% A1 LINUX TCP/IP %42 34

Experiment with making changes to the myapp application that you used in the

earlier lab. For example, change printf("Hello, Petalinux World!\n") to
printf("Hello, Welcome to the Xilinx workshop!\n"). Rebuild it on the

host and run it again on the ARM Cortex-A9 MPcore system over the NFS mount.

1)

2)

3)

4)

5)

6)

7)

8)

9)

Execute the following:

cd /mnt
1s

Does it all seem strangely familiar? It should—it is the home directory on your
desktop machine. You have read/write access, so be careful. Deleting a file on this

mounted NFS drive means that it is deleted from your desktop, and vice versa.

To see how NFS mounting can be useful on your host machine, return to the myapp
application from the earlier lab by executing the following command in the Gtk-

Term window:

cd /mnt/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-2014.2/build/\
linux/rootfs/apps/myapp

Run the hello application directly over the network by running:

./myapp

Open a new terminal.

Change to the myapp directory:

[host]$ cd ~/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-
2014.2/components/apps/myapp

Try making some changes to the myapp. c file (to the printf statement, for exam-
ple).

[host] $ gedit myapp.c

Change the first printf statement to printf("Hello, Welcome to the
XUP workshop!\n").

Change to the PetaLinux project directory.

[host]$ cd ~/emblnx/labs/lab3/Avnet-Digilent-ZedBoard-
2014.2

Build the application only.

[host] $ petalinux-build -c rootfs/myapp -x clean
[host] $ petalinux-build -c rootfs/myapp

2 W% A1 LINUX TCP/IP %42 35

10) Run myapp again on the ARM Cortex-A9 MPcore system by running the following
command:
./myapp
The output of the application should reflect the changes.
Any changes made on the host to the application can be tested on the ARM Cortex-

A9 MPcore system immediately over the NFS mount.

2.1.9 Navigating the Web Page on HTTP

More and more embedded systems and applications are becoming web-enabled, allowing
for remote control, management, and monitoring. In this step, you will experiment with the

PetaLinux uWeb demo and httpd

1. Launch a web browser on the host machine and explore the default placeholder page that

is installed on the ARM Cortex-A9 MPcore Linux system.

1) Exit the existing QEMU Linux by pressing <Ctrl-a> and then <x> and restarting
QEMU by running the following command:
[host] ¢ petalinux-boot --gemu --prebuilt 3 --kernel --
gemu-args "-redir tcp:10080:10.0.2.15:80"
At the bottom of the boot-up messages, you can see the uWeb server has been started

during boot.

2. The web demo self-contains the uWEB server. There is another httpd server built into

the ARM Cortex-A9 MPcore Linux system, which is a BusyBox httpd server.

In the rest of this lab, you will try this BusyBox httpd server and experiment with a
simple CGI application.

Log in to the ARM Cortex-A9 MPcore console and start the httpd server.

1) Log in to the system.

2) Run the following command:
httpd -p 8080 -h /home/httpd
The above command binds the httpd server to port 8080 and uses /home/httpd
as the httpd home directory.

3) On your host machine, change the URL in your web browser to:
http://localhost:10080
This time, you will see a home page. This home page is located in /home/httpd
in the ARM Cortex-A9 MPcore Linux system.

2 W% A1 LINUX TCP/IP %42 36

4) Explore the httpd home directory by running the following command in the ARM
Cortex-A9 MPcore Linux:
1s /home/httpd
The directory should list:
cgi-bin css img javascript source

The cgi-bin/ directory is for CGI applications.
5) Press <Ctrl+a> and then <x> to shut down QEMU.

2.1.10 Building the Web-Enabled Application

Web serving embedded applications becomes a lot more useful when the web interface
can be used to control the device,or monitor sensor inputs. In this step, you will build and
experiment with a simple web-enabled application on the ARM Cortex-A9 MPcore system.

This step will be performed on the hardware board, not QEMU.

1. Inthis step you will build a web-enabled application. A sample CGI application to control
the on/off of the LEDs on the board is provided.

Build this program and run it step by step.

1) Make sure that you are in the PetaLinux project location; i.e.,
~/emblnx/labs/lab4/Avnet-Digilent-ZedBoard-2014.2.

2) Enter the following command to create a new user application inside the PetaLinux
project:
[host] $ petalinux-create -t apps --name cgi-leds
The new application you have created can be found in the <project-
root>/components/apps/cgi-leds directory, where <project-root> is
~/emblnx/labs/lab4/Avnet-Digilent-ZedBoard-2014.2.

2. Copy the cgi-leds source from the sources/lab4/cgi-1leds directory.

1) Change to the newly created application directory:
[host] $ cd <project-root>/components/apps/cgi-leds

2) Copy the cgi-1leds application related files from the sources/lab4/cgi-leds
directory:
[host] $ cp ~/emblnx/sources/lab4/cgi-leds/* ./
The main application is composed of cgi_leds.c, led.cgi.c, and led-
gpio.c. The other files are for a small CGI library. You can find them in the
cgi-leds project. If you open the Makefile, you will notice that the target

2 W% A1 LINUX TCP/IP %42 37

application name is set to led.cgi.

3. Select the new application to be included in the build process. The application is not
enabled by default.

1) Make sure that you are in the project directory;i.e., ~/emblnx/labs/lab4/Avnet-
Digilent-ZedBoard-2014.2.

2) Launch the rootfs configuration menu by entering the following command:
[host] $ petalinux-config -c rootfs

3) Press the Down Arrow key to scroll down the menu to Apps.

4) Press <Enter> to go into the Apps sub-menu.
The new application cgi-leds is listed in the menu.

5) Scroll to cgi-leds and press <Y> to select the application.

6) Exit the menu and select <Yes> to save the new configuration.
It will take a few seconds for the configuration changes to be applied. Wait until you

return to the shell prompt on the command console.
4. Build the image.

1) Enter the following command to build the image:
[host] $ petalinux-build

Let the build process to complete and the image be created.
5. Make sure that the BOOT . BIN file located in SD card is copied from the pre-built direc-
tory.

1) Make sure that the pre-built BOOT.BIN file is located in the SD card.
If you have performed the “Build and Boot an Image” lab or “Application Develop-

ment and Debugging” lab as your last lab, there is no need to perform any changes
to the SD card.

2) If not, copy the BOOT . BIN file from the ~/emblnx/sources/labl/SDCard di-
rectory to the SD card.

6. To download the image, run the DHCP server on the host.

1) Run the DHCP server:

[host] $ sudo service isc-dhcp-server restart
7. Power up the board and set the serial port terminal.

1) Power ON the board.

2 W% A1 LINUX TCP/IP %42 38

2)

3)
4)

Ensure that /dev/ttyACM® is set to read/write access:
sudo chmod 666 /dev/ttyACMoO
In the dashboard, in the Search field, enter the serial port.

Select the Serial port terminal application.

You can reset the board (BTN7) to see the booting info once again.

8. Boot the new embedded Linux image over the network.

1)
2)

3)

4)

5)

Watch the booting process in the GtkTerm window.

Press any key to stop auto-boot when you see the autoboot message in the GtkTerm
window.

If you did not see the “DHCP client bound to address” message during uboot
bootup, you will need to run dhcp to obtain the IP address:
U-Boot-PetalLinux> dhcp

Set the TFTP server IP to the host IP by running the following command in the
u-boot console:

U-Boot-PetalLinux> set serverip 192.168.1.1

Download and boot the new image using TFTP by executing this command in the
u-boot console:

U-Boot-PetalLinux> run netboot

This command will download the image. ub file from /tftpboot on the host to
the main memory of the ARM Cortex-A9 MPcore system and boot the system with
the image.

Watch the GtkTerm window.

9. Run the led. cgi program.

1)

2)

Once the board reboots, log in and start the httpd service:

httpd -p 8080 -h /home/httpd

Point the web browser on the host back to the board:

http://<IP of the board>

The IP address of the board will be shown in the end of the boot messages.

For example:

Sending select for 192.168.1.5...
Lease of 192.168.1.5 obtained, lease time 864000

From the above messages, you can see that the board’s IP is assigned as 192.168.1.5.

2 W% A1 LINUX TCP/IP %42 39

Again, the index page will display.
3) Modify the URL to include the path to the new led. cgi application (Fig. 2.4):
http://<IP of the board>:8080/cgi-bin/led.cgi

Bl

= 192.168.1.2

CGI Blinkenlight

LED GPIO ID: |499
To change LED GPIO, change the value in the "LED GPIO ID" box and press "Clear" button.

led0 ledl led2 led3 led4 led5 led6 led7

ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF

Clear

&l 2.4: 1ed. cgi application

4) Enter the following command to display the ID numbers of the various available
GPIOs:

1s /sys/class/gpio
Note that ID number 243 corresponds to the LEDs. The ID number may vary de-

pending on which SD card image you have used.
5) In the browser, enter 243 in the LED GPIO ID field.

6) Click ON/OFF in the web page and watch what happens on the board and the web
page. (Fig. 2.5)
7) Click clear button to turn OFF all the LEDs.

8) Once you are done, power off the board.

2.1.11 Conclusion

In this lab, you have learned how to:
o Use telnet tologin to the Linux system
o Use ftp to transfer files
+ Use NFS to mount your development system onto the Linux target

 Execute a Linux application directly over the NFS mount, instead of updating and down-

2 W% A1 LINUX TCP/IP %42 40

LiDemo Web Page

[192.168.1.2

CGI Blinkenlight

LED GPIO ID: |243
To change LED GPIO, change the value in the "LED GPIO ID" box and press "Clear" button.

led0 ledl led2 led3 led4 led5 led6 led7

ON/OFF ON/OFF OMN/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
Clear

&] 2.5: Providing the LED GPIO ID and turning ON/OFF the LEDs

loading an entirely new image file

o Create and modify simple static HTML pages so that they can be served by the embedded

web server

o Describe how simple web-enabled applications run on the Linux target

2.1.12 Completed Solution

If you want to run the solution then copy BOOT . bin from the
labsolution/lab4/SDCard directory onto a SD card. Place the SD card in the ZedBoard.
Set ZedBoard in the SD Card boot mode. Connect the ZedBoard to the host machine using
Ethernet cable.

Run the following command to start DHCP server on the host:

[host] $ sudo service isc-dhcp-server restart

Copy the image.ub file from the labsolution/lab4/tftpboot directory into
/tftpboot directory.

Power ON the board. Set the terminal session. Interrupt the boot process when autoboot
message is shown. Set the serverip address using the following command in the target board
terminal window:

#set serverip 192.168.1.1

Run the netboot command:

#run netboot

Login into the system and test the lab.

2 W% A1 LINUX TCP/IP %42 41

2.2 Linux M4&4mFIESLIe

221 SHHE
o AR TCP/IP Hp RS
o BBRIF2E 2 Linux [Socket B4 74 A 7 %
o BCRMEFH TCP WM nAR) A 72
o AGREARIL TR/ IRSF A BN AR P i 2 55 0 1%

222 SHRIE

o ARERPE LT TCP PMIHIARSS 4% 5% P v A TR, %5 7 i 1 iR 55 & &
BT, RS AR R AT TR R

o IG5 A AT IRAR AR 2.6 Fr

)
v
A socket()ERELLIEE— socket
v
18T struct sockaddr_in £5{RIRE IP #BdE | w , ROZEHD
NE e
v
AR bind () REUEHBIIHE(EBEPEE! socket £
v
A listen(RENRERAEREEL
v
AR accept(REFFFEFINEREBR
v
iEFH read ()F0 write () EREBUR TR
v

e)

Kl 2.6: IRk 55 A AU LA

o Z PR RAR E A 2.7 Frws

223 $EEIR

o TR ERIFEA SRR H %, Rl A LT A

2 W% A1 LINUX TCP/IP %42 42

=)

v
A socket()ERELBIFER— socket
v
BT struct sockaddr_in £ E IP #BhE , im0, ML
IWESITE TS\
v

TR connect()RENEZIRSSES

v
M read (%0 write) BRI & EIE

v

e)

Bl 2.7: % AU AR

cd /home/zynq/linux_programming/lab#6
WMTIEF A, #ABREITVELLESH MRS tcp_client.c. tep.h F

tcp_server.c.
D © @ kitt@kitt-desktop: ~/ultrawise/linux_programming/lab#6
MHHF) #miE(E) =8(V) £m(T) #E(H)

kitt@kitt-desktop: £ ®@$ cd /home/kitt/ultrawise/linux programming/lab#6
kitt@kitt-desktop:lab#6% 1s

build.sh client makefile server tcp client.c tcp.h tcp server.c
kitt@kitt-desktop:lab#6%

o GNP

TEZ i A2 . . /build. sh
2 & ® kitt@kitt-desktop: ~/ultrawise/linux_programming/lab#6
M{H(F) #wmEE(E) ZEE(V) £iR(T) #EI(H)

kitt@kitt-desktop:lab#6% 1s
build.sh makefile +tcp client.c tcp.h tcp server.c

kitt@kitt-desktop:lab#6% ./build.sh
gcc -o server tcp server.c

gcc -o client tcp client.c
kitt@kitt-desktop:lab#6%

F gec a4 %1% tcp_client.c Ml tcp_server.c BT H4T X/ client H§
server

2 W #Fn LINUX TCP/IP %3 #2 43

0 © @ kitt@kitt-desktop: ~/ultrawise/linux programming/lab#6
MH(F) HmiB(E) E8(V) £iE(T) FEE(H)

kitt@kitt-desktop:lab#65% 1s -1

SHE 36

-TWXT-XI-X kitt kitt 111 2813-832-28 15:52 bhuild.sh
-TWXI-Xr-x kitt kitt 7867 2813-03-28 16:84 client

-rwxr-xr-x 1 kitt kitt 118 20812-05-25 :49 makefile
-MWXT-Xr-X kitt kitt 7718 2813-03-28 16:84 server
(r-x 1 kitt kitt 1082 2012-86-84 16:14 tcp client.c
kitt kitt 358 2812-85-25 :53 tcp.h
xr-x 1 kitt kitt 1513 2012-06-84 16:15 tcp server.c
klffmklff desktop:lab#6%

o BATI T
FIHBAN R, et — DL HisiTIRSG 4T server, RJETES — M

BT8P nfEfT client
D © @ kitt@kitt-desktop: ~/ultrawise/linux_programming/lab#6

WiH(F) miB(E) E;E(V) £i(T) #5%=(B) #81(H)

kitt@kitt-desktop: ~jultrawise/linux_progra... ¥ kitt@kitt-desktop: ~/ultrawise/linux_progra... %

kitt@kitt-desktop:lab#6% ./server
Server get connection from 127.0.8.1

D © @ kitt@kitt-desktop: ~/ultrawise/linux_programming/lab#6
MEH(F) fm3B(E) S8(V) £iR(T) #=(B) #Eei(H)

kitt@kitt-desktop: ~/ultrawise/flinux_progra... 3 kitt@kitt-desktop: ~/ultrawise/linux_progra... #

kitt@kitt-desktop:lab#6$./client localhost
Please input char: hello socket

MIBITIHEW T IR H, 1ERE % SR LRI IR 55 23 #2 7 FHZE7E accept BREL
b, SR, AR RFER PRI, FHZEE read RELL, FfFZEUHE.

U R IETH IR WUGE S AR, RSG5 s e BUE ST R HIR , AREESEAG B i 1 1%
D © @ kitt@kitt-desktop: ~/ultrawise/linux_programming/lab#6

NH(F) #mEB(E) EB(V) £i%(T) #=(B) #EN(H)

kitti@kitt-desktop: ~/ultrawise/linux_progra... # kitt@kitt-desktop: ~/ultrawise/linux_progra... 3%

kitt@kitt-desktop:lab#6% ./server
Server get connection from 127.6.8.1

Server received hello socket

2 W% A1 LINUX TCP/IP %42

224 KEKREDH
o RSSEAAS S A

int main(int argc,char**argv)
{

int sockfd,client_fd;

int addr_len = sizeof(struct sockaddr_in);

struct sockaddr_in server_addr;

struct sockaddr_in client_addr;

char buf[BUF_SIZE];

int bytes;

//IRFSESIm YL socket AR

if((sockfd=socket(AF_INET,SOCK_STREAM,0))==-1) {
fprintf(stderr, "socket error:%s\n",strerror(errno));
exit(1);

}

//IR53UHIETS sockaddr SR

bzero(&server_addr,addr_len);//?Eal, = 6

server_addr.sin_family = AF_INET;//IPV4 [WN450H0Y

server_addr.sin_port = htons(SERVER_PORT);// & =inl 1=

//EERSSEITEN IP BENE

server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

//80E socket IWATTE] IP Hbif

if(bind(sockfd, (struct sockaddr*)&server_addr,addr_len)==-1) {
fprintf(stderr,"bind error:%s\n",strerror(errno));
exit(1);

}

/E BT TEENRAKEFin

if(listen(sockfd,5)==-1){
fprintf(stderr,"listen error:%s\n",strerror(errno));
exit(1);

while(1)

//IRFBEEE, BRBFERRIDEE
if((client_fd = accept(sockfd, (struct sockaddr*)&client_addr,
&addr_len))==-1) {

fprintf(stderr,"accept error:%s\n",strerror(errno));
exit(1);

}

/NSRS RSB HFEIHEE

fprintf(stderr, "Server get connection from %s\n",

2

W % Fn LINUX TCP/IP % #2

inet_ntoa(client_addr.sin_addr));
if((bytes = read(client_fd,buf,BUF_SIZE))==-1) {

fprintf(stderr,"read error:%s\n",strerror(errno));

exit(1);
}
//EBENSRHRGEI ERIER
buf[bytes]="\0";
printf("Server received %s\n",buf);
/ /R @ ER
close(client_fd);
}
close(sockfd);
return 0;

o BRI oA

int main(int argc,char**argv)

{
int sockfd;

int addr_len = sizeof(struct sockaddr_in);

struct sockaddr_in client;

struct hostent *host;

char buf[BUF_SIZE];

int bytes;

if(argc!=2) {
fprintf(stderr, "Usage:%s hostname \a\n",argv[@]);
exit(1);

}

//6F hostname EHTIHHZZ

if((host=gethostbyname(argv[1]))==NULL) {
fprintf(stderr, "Gethostname error\n");
exit(1);

}

//BPIEEHIBEYL socket AR

if((sockfd=socket(AF_INET,SOCK_STREAM,0))==-1) {
fprintf(stderr, "socket error:%s\n",strerror(errno));
exit(1);

}

//EFIniERIETRESSEAR

bzero(&client,addr_len);//Wi5lk, = 0

client.sin_family=AF_ INET,//IPV4 WZESTDIY

client.sin_port=htons(SERVER_PORT);//L=Hm1=

client.sin_addr=*((struct in_addr *)host->h_addr);// &= IP if

2 W% A1 LINUX TCP/IP %42 46

//BFEBARERSK

if(connect(sockfd, (struct sockaddr*)&client,addr_len)==-1) {
fprintf(stderr,"connect error:%s\n",strerror(errno));
exit(1);

}

//EENT)

printf("Please input char: ");

[/ ROREE

fgets(buf,BUF_SIZE,stdin);

write(sockfd,buf,strlen(buf));

//BRER

close(sockfd);

return 0;

	封面
	摘要
	目录
	Zynq Linux 系统介绍
	A First Look
	Introduction
	Objectives
	Typographic Conventions
	Before You Start
	Initializing the Workshop Environment
	General Flow for this Lab
	Power up the Board and Log in
	Exploring the Embedded Linux Environment
	Conclusion
	Completed Solution

	Build and Boot an Image
	Introduction
	Objectives
	Preparation
	General Flow for this Lab
	Choosing a Linux Platform
	Building the Linux Image
	Booting the System
	Conclusion
	Completed Solution

	网络和Linux TCP/IP编程
	Networking and TCP/IP
	Introduction
	Objectives
	Preparation
	Exploring Network Features
	General Flow for this Lab
	Logging In Using Telnet Step
	Transferring Files with FTP
	Using NFS
	Navigating the Web Page on HTTP
	Building the Web-Enabled Application
	Conclusion
	Completed Solution

	Linux网络编程实验
	实验目的
	实验原理
	步骤与现象
	关键代码分析

