
Chapter 6:

The vim Editor

An Exercise in Memorizing

Your Alphabet



In this chapter …

• ed, ex, vi, vim

• vim basics

• Command Mode

• Input Mode

• Last Line Mode

• Buffers

• Yanking



In the beginning …

• There was ed … single line editor

• Then came ex … had a nifty visual mode

• Visual mode lead to vi

• Written by Bill Joy (BSD, csh, Sun) in 1976

• vi a Unix utility – so we need a free clone

– elvis, nvi, vile, and vim



vim

• We’ll be using vim - vi improved

• Written by Bram Moolenaar

• In our RedHat distro, we have /bin/vim

• vi is just an alias to vim

• Standard in just about all Linux distros

• Available from www.vim.org

– gVim, multi-platform



vim con’t

• Powerful, quick text editor

• Excellent for programming due to intelligent 

language detection

• NOT a formatting tool … plain text only

• Nearly limitless options and commands

• Excellent tutorial - vimtutor



Starting vim

• Syntax: vim [options] [filename]

• Filename is optional

– With it, it opens that file for editing

– Without, it opens a default screen

• Many options available, most commonly 

used ones are for file recovery



Cursor

Tildes represent 

empty lines

Current buffer

(the file you’re editing)

Current line

Current

column



How it works

• vim copies the contents of the file you want 

to edit into memory

• This memory is referred to as the Work 

Buffer

• Changes are made to the buffer, not the file

• You must write changes to file when done 

editing the buffer



Modes

• vim has three modes

– Command

– Input

– Last Line

• When you start vim, you begin in Command 

Mode by default

• Hitting ESCAPE will get you back to 

Command Mode from other modes



Command Mode

• Default mode

• Used to enter commands

– Text manipulation

– Change modes

– Save/exit

• Most commands are just alpha characters, 

not control sequences

• Case sensitive!



Insert Mode

• The mode that lets you edit and enter text

• Several sub-modes

– Insert

– Append

– Open

– Replace

– Change

• You’ll spend most of your time here



Last Line Mode

• From command mode press :

• Cursor jumps to the last line on the screen

• Here you can manage files, issue shell 

commands, change editor settings

• Also where you go to exit



Getting into Input Mode

• i nsert before cursor

• I nsert before first nonblank character on line

• a fter cursor

• A t end of line

• o pen line below

• O pen line above

• r eplace current character

• R eplace characters



Command Mode - Essentials

• h move cursor left

• j move cursor down

• k move cursor up

• l move cursor right

• x delete character

• dw delete word

• dd delete line

• ZZ write and quit



Command Mode con’t

• /regexpr search forward

• ?regexpr search backwards

• n repeat last search (ie, find next result)

• N repeat last search, in opposite direction

• nG Jump to line n (omit n to go to last line)



Last Line Mode Essentials

• w write file

• q quit

• w! write read-only file

• q! quit without saving changes

• e filename opens a file for editing



Last Line Mode con’t

• sh open a shell

• !command open a shell, run a command, 

then exit the shell

• .!command open a shell, run a command, 

exit the shell, placing the standard output into 

the work buffer

– Can also do !!command from Command Mode



Buffers

• Work buffer

• General Purpose Buffer – kind of like the 

clipboard in Windows

• Named buffers

• Numbered buffers



General Purpose Buffer

• Contains recently edited or deleted text

• It’s where undo information is stored

• You can copy (yank) text to this buffer and 

then paste (put) it elsewhere



Named Buffers

• Similar to the General Purpose Buffer

• Does not contain undo info – only contains 

text if you put it there

• Each of the 26 buffers is referenced by letter 

a-z



Numbered Buffers

• Numbered 1-9

• Read only

• Contain most recently deleted chunks of data 

greater than one line long

• You can paste (put) from these buffers and 

use them for undoing deletes



yank

• Copies lines of text

• To yank a line, use yy

• Or use Y – it’s shorter

• To yank multiple lines, place cursor on the 
first line and use nY, where n is the number 

of lines to yank



yank con’t

• By default it yanks text to the General 

Purpose Buffer

• To place in a named buffer, precede the 

yank command with double quotes and the 

letter of the buffer you wish to use

• Use lowercase letter to overwrite, upper case 

to append

• Ex: “c5Y would yank 5 lines to buffer c



put

• Pastes text from a buffer into the Work Buffer

• Use p to put below current line

• Use P to put above current line

• Again, if using a named buffer, precede with 

double quotes and the letter



vim

• Just barely scratching the surface

• Hundreds of commands

• Command modifications

• We’ll cover searching and substituting in 

Appendix A


